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Free surface flow due to a sink 
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Two-dimensional free surface flows without waves, produced by a submerged sink 
in a reservoir, are computed numerically for various configurations. For a sink above 
the horizontal bottom of a layer of fluid, there are solutions for all values of the Froude 
number F greater than some particular value. However, when the fluid is sufficiently 
deep, there is an additional solution for one special value of F < 1 .  The results for 
a sink a t  the vertex of a sloping bottom, treated by Craya and by Hocking, and for 
a sink in fluid of infinite depth, treated by Tuck & Vanden-Broeck, are confirmed 
and extended. In  particular it is shown that as the bottom tends to the horizontal, 
the solution for a sink at the vertex of a sloping bottom approaches a solution for 
a horizontal bottom with F = 1.  However solutions are found for all values of the 
Froude number F 2 1 for a sink on a horizontal bottom. 

1. Introduction 
When fluid is withdrawn from a reservoir by a sink of strength Q a t  depth h, the 

surface above the sink may be drawn down, as in figures 1 and 6. An exact solution 
of this type was found by Craya (1949) (also in Yih 1965, pp. 124-126) when the 
bottom sloped downward at the angle B = in from the vertical, and a numerical 
solution was found by Tuck & Vanden-Broeck (1984) for /3 = 0. Then Hocking (1985) 
obtained numerical solutions for a sequence of angles ranging from 0 to in. In each 
case there was just one solution without waves. Moreover Collings (1986) calculated 
solutions for infinite Froude number when B =  in. We have recomputed these 
two-dimensional flows and confirmed their solutions. 

For a horizontal bottom, however, we have found solutions for all values of F 
greater than some particular value. When the fluid is sufficiently deep, there is an 
additional solution for one special value of F < 1 We were led to look for these 
solutions by our experience with other free surface flows with gravity, such as flows 
over weirs in channels and flows around lips of teapot spouts. In those cases we found 
that in fluid of infinite depth there was a flow only for a special value of the 
appropriate Froude number. This kind of flow also occurred in fluid of finite depth, 
but in addition there were solutions for all Froude numbers greater than some 
particular value. Our present results show that this is also the case for free surface 
flows produced by sinks. 

In $2 we compute wave-free flows produced by a sink in a liquid layer of finite depth 
with a horizontal bottom. We fmd that the sink strength Q and the Froude number 
Fare  determined by the sink depth h and the distance W from the sink to the bottom. 
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FIGURE 1. Vertical section of a reservoir with a sink at 8 on the vertical wall BSC, a horizontal 
bottom RI and a free surface CI. The height of the sink above the bottom is W, and its depth below 
the free surface at infinity is h. The x-axis is along the bottom and the y-axis is along the wall. 
This figure is a n  actual computed surface profile for h/ W = 0.5. The Froude number F is 0.44. The 
vertical scale is the same as the horizontal scale. 

The results are discussed in $3. It is pointed out that the solutions are subcritical 
for 0 < h/ W < 0.70 and supercritical for 0.70 < h/ W < 0.76, while no solutions are 
found for h/ W > 0.76. Additional supercritical solutions are constructed in $4, and 
it is indicated that there are additional subcritical solutions with waves. I n  $ 5 ,  we 
find solutions for a sink at the corner on a sloping bottom, which were mentioned in 
the first paragraph of this section. 

2. Sink above a horizontal bottom 
Let us consider the flow in the region of the z-plane shown in figure 1. At the 

distance W from a horizontal bottom there is a sink with strength 2Q. The bottom 
BI is a streamline on which we require that the stream function $(x, y) = Q .  The 
portion BS of the vertical wall, where x = 0 , O  < y < W ,  is part of the same 
streamline. The portion SC of the vertical wall, where x = 0, W c y < yc, is part of 
another streamline on which $(z, y)  = 0. That streamline continues along the free 
surface CI, which leaves the wall tangentially at some point C which is to be 
determined. . 

We denote by h the depth of the sink below the level of the free surface at infinity. 
We also choose the unit of length and the unit of velocity so that Q = 1 and g = 1. 
Then we introduce the complex velocity potential f(z) = $(x, y)+i$(x, y). I n  the 
f-plane, the flow region is the strip 0 < $ c 1 with the streamline ICS on $ = 0 and 
the streamline IBS on $ = 1. We map i t  onto the lower half of the unit circle of the 
auxiliary t-plane by the transformation 

(see figure 2 ) .  
Next we consider the complex velocity [ ( t )  = u-iv as a function of t in the 

semicircle in figure 2 .  Here u = #z and v = $v are the velocity components. Since there 
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FIQURE 2. The image of the flow region in the t-plane is the lower half of the unit circle with I 
at t = -1,  B at t = - b ,  S a t  t =OandC at t = 1.  

is a sink of strength -2 at t = 0 and a righi-angled corner at x = y = 0, 5 must have 
singularities at these two points and be regular elsewhere. The appropriate 
singularities are proportional to t-' a t  t = 0 and to ( t+  b)i at t = - b,  where - b is the 
image of the corner B in the t-plane (see figure 2). Therefore we write [(t) in the form 

\ 

The coefficients a, are to be found. 
On the wall from B to C, u = 0 so [ ( t )  must be imaginary for - b < t < 1. In  addition 

on the bottom from B to I, v = 0, so [ ( t )  must be real for - 1 < t < - b. Both of these 
conditions are satisfied by (2.2) if we choose all the a, to be real. 

On the free surface from C to I the pressure is assumed to be constant. By using 
the Bernoulli equation we can write this condition as 1a2+2y = constant. In  the 
t-plane it must hold on the circular arc t = eig, 0 2 u -n. Differentiating this 
condition with respect to u yields a11J2/aa+ 2ay/aa = 0. Now on the circular arc (2.1) 
yields f = (2/n) log cos (iu), which is real, so f = $ there. Differentiating this 
relation gives a$/aa = - (1/n) tan (+a). We can use this expression to write 
ay/au = (ay/a$)(a$/au) = - [ V / ( U ~ + + ~ ) ]  (1/n) tan (+a). Upon inserting this result 
into the differentiated form of the constant pressure condition, we obtain 

2, 
= O  on t=eiu,  O a c r 2 - n .  --('tan?)- alC12 

an 2 u2+v2 

We now set t = eiu in (2.2) to get g(eiu), and we substitute that expression into (2.3). 
We will use the resulting equation to determine the unknown coefficients a, that 
occur in (2.2). 

To do so, we truncate the infinite series in (2.2) after N- 1 terms. We find the N -  1 
coefficients a, and the constant b by collocation. Thus we introduce N-1 mesh 
points, I - :  

U* = -n- 
N-1 

( I =  1, ..., N-1). 

By using (2.2) we obtain 6 and alg12//aa at u = crI in terms of the coefficients a, and 
b. Upon substituting these expressions into (2.3) we obtain N- 1 nonlinear algebraic 
equations for the N unknowns {a,}fz: and b.  An Nth equation is obtained by fixing 
the position of the sink. This is achieved by specifying either a value for b or a value 
for h/ W .  To fix h/ W we evaluate h and W by integrating the identity 

along the real diameter and along the circle in the t-plane. 
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We solved the resulting system of N equations by Newton's method. Once this 
system was solved we obtained the shape of the free surface by integrating (2.5) 
numerically. In addition, we calculated the Froude number F based on the total depth 
at  infinity, which is defined by 

F = Q[g(H+ W)3]-k (2.6) 

(2.7) 

From our choice of dimensionless variables, it  follows that F is given by 

F = [c( - 1)]$. 
The coefficients a, were found to decrease rapidly. For example, a, x 0.3, 

a,, x -2 x lop5 and a2, x - 2 x lo-* for h/W = 0.74. Most of the calculations were 
done with N = 30. 

3. Discussion of results 
The present problem is qualitatively similar to the flow over a weir which we have 

already studied (Vanden-Broeck & Keller 1987). In particular, the flux Q and the ratio 
h/ W cannot be specified independently when h/ W is sufficiently small. 

Following our analysis of weir flows we define a 'discharge coefficient ' C(h/ W )  by 

h the relation 
Q = C(w) &hi. (3.1) 

We assume that for h/ W small, C(h/ W )  can be expanded in a finite Taylor series : 

h =c(o)+-C'(o)+o W 

Upon substituting (3.1) into (2.6) and expanding for h / W  small, we obtain 

F = ($)'{ C(0) + i [ c . ( O )  - v(O)] + 0 [ (v) h 2  I} . 
(3.3) 

Relation (3.3) is similar to the relation (2.6) we derived for weir flows (Vanden-Broeck 
& Keller 1987). 

Tuck & Vanden-Broeck (1984) solved the sink problem numerically for h/ W = 0. 
They found a unique solution characterized by (2Q)2(gh3)-1 = 12.622. This result, 
together with (3.1), implies C(0) = 1.776. (3.4) 

In order to find C'(0) and C(h/W) for h/W += 0 we plotted our numerical results 
for P(h/  W ) 3  versus h/ W .  For h/ W small, the graph is close to a straight line of slope 
-2.4 which intersects the F(h/W)-$ axis at  1.78. Therefore (3.3) implies that 

C(0) - 1.78, (3.5) 

C'(O)-&'(O) N -2.4. (3.6) 

Relations (3.5) and (3.6) yield 
C'(0) = 0.3. (3.7) 

We note that (3.5) agrees with the value (3.4) previously obtained by Tuck & 
Vanden-Broeck (1984). 

In  figure 3 we have plotted the values of F versus h/W and versus b.  For 
h/ W < 0.70, which corresponds to b > 0.37, the flow is subcritical, i.e. F < 1. For 
h / W  > 0.70, corresponding to b c 0.37, the flow is supercritical, i.e. F > 1. As 
hlW-tO.76, F + m .  These solutions exist only for h / W  < 0.76. 
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FIQURE 3. The Froude number F versus h/ W and versus b. 

As h/ W increases from 0 to 0.76, the parameter b decreases monotonically from 
1 to 0.33. We shall show later that this value is exactly $. A typical free-surface profile 
for h/ W = 0.5 is shown in figure 1. 

Our subcritical solutions for h/W < 0.70 are characterized by a uniform stream at 
infinity. This is exceptional since usually a subcritical flow has a train of waves at  
infinity. We believe that subcritical solutions with waves also exist for the present 
problem. Their wave amplitude a must be a function of F and h/ W: 

a = a(F ,  h/ W ) .  (3.8) 

The special expression (2.2) requires that there be no waves at  infinity. Relation (3.8) 
indicates that this is possible only if some relation between F and h/ W is satisfied, 
namely a(F,  h/ W) = 0. Such a relation is exactly what we discovered numerically 
(see figure 3). 

The preceding considerations suggest that there are also additional supercritical 
solutions for h/ W > 0.70. Supercritical flows are characterized by the presence of 
exponentially decreasing terms at infinity. Thus generally c has the form 

c-cm+AenAf as$-+-m. (3.9) 

Here h is the smallest positive root of 
7th - F-2 tan xh = 0. (3.10) 

Equation (3.10) has real solutions only for F > 1, i.e. only for supercritical flow. 
For F < 1, (3.10) has purely imaginary roots and then (3.9) corresponds to a train 
of small amplitude waves at infinity. Therefore the exponentially small term which 
occurs in the expression for supercritical flows is the 'analytic continuation' of the 
small-amplitude wave term of subcritical flows. As in the subcritical case, the factor 
A in (3.9) must depend upon F and h/ W: 

A = A(F,  h / W ) .  (3.11) 
In terms of the transformation (2.1) from f to t ,  we can rewrite (3.9) as 

5 -  cm+A(t+1)2A a s t + - l .  (3.12) 
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The special expression (2.2) does not allow a singularity like that in (3.12) as t +- 1. 
Therefore, the supercritical solutions we have computed correspond to 
A(F,  h / W )  = 0. This agrees with our numerical results which show that solutions of 
the form (2.2) can be obtained only if some relation between F and h/ W is satisfied, 
as figure 3 shows. 

4. Additional supercritical flows 
We shall now construct solutions for which A(F,  h / W )  + 0. For F = 00, the 

velocity is constant on the free surface and the problem has an exact solution, namely 

(t+b): 
t ( l+tb$'(- ' )*  

[ ( t )  = -i 

Solution (4.1) is defined for all values of b. By using (2.1) and (4.1) we find that 

as$+--. 

Relation (3.10) shows that A+; as F+m. Therefore matching (3.9) and (4.2), and 
using (2.7), yields 

1 -3b 
2-2b 

A - ~ t -  as F + m .  (4.3) 

The asymptotic expression (4.3) vanishes for b = +. The corresponding value of h / W  
is 0.76. This is the solution for F = 00 obtained by using (2.2). (See figure 3). However 
solutions for F = 00 exist for b =+ 4. They are given by (4.1). 

Solutions for F large can be obtained by using perturbation theory: (4.1) can be 
considered as the first term of an expansion in powers of F-l. Instead of doing that, 
we shall solve the problem numerically for arbitrary values of F.  

We generalize (2.2) to  allow the singularity (3.12) at t = - 1. Therefore we write 

[=  i(t+b):t-lexp A(1+t)2A+ Z antn . 

Here h is the smallest positive root of (3.10). The coefficients a, and the constant 
A are to be found. We truncate the infinite series after N -  1 terms and, as before, 
satisfy (2.3) at the collocation points (2.4). This leads to N -  1 algebraic equations 
for the N+1 unknowns {an}:::, b and A .  Two more equations are obtained by 
specifying F and the position of the sink, i.e. h/W or b. The resulting system of N +  1 
equations with N +  1 unknowns is solved by Newton's method. 

We note that we specify two parameters F and h/ W or b, in order to obtain a unique 
solution. We checked numerically that specifying more or less parameters did not 
yield convergence for N large. 

In  figure 4 we present numerical values of the parameter A / F f  appearing in (4.4) 
versus F for b = 0.3,0.35 and 0.4. As F+ 00,  the curves approach asymptotically the 
values (4.3). The points at which the curves intersect the F-axis correspond to 
supercritical solutions for which A = 0 in (4.4). These are the solutions described by 
the portion 4 < b < 0.37 of the curve in figure 3. 

For b < 4 or b > 0.37 the curves in figure 4 do not intersect the F-axis. For b > 0.37 
we found that as the Froude number is decreased from infinity each curve in figure 4 
reaches a limit point and then turns back. Therefore for some values of the Froude 
number two different solutions are possible. A typical profile for b = 0.4, F = 1.3 and 

1 (4.4) 
m 

[ n - o  



Free surface$ow due to a sink 

0.3 F’” 
115 

FIGURE 5. The free surface profile of one of the family of additional supercritical flows with 
b = 0.4, F = 1.3 and A P t  = -1.15. The dot indicates the position of the source. 

A F f  = - 1.15 is shown in figure 5. We expect that each solution branch for b < 0.37 
will end when a stagnation point appears on the free surface with 8 120” angle at 
it. 

For b < 0.37 the curves of figure 4 extend from F = 00 to F = 1,. We did not 
continue these branches into the range F < 1. Since A 4 0 as F+ l+, we expect (by 
analytic continuation) the solutions for F < 1 to have waves a t  infinity, i.e. to have 
a 9 0 in (3.8). 

The results above show that there are two different classes of supercritical flows. 
The first class is characterized by the fact that subcritical flows are ultimately reached 
when the Froude number is decreased from infinity (the two top curves in figure 4). 
In  the second class a limit point is reached before the subcritical regime is reached 
(the bottom curve in figure 4). Another example of supercritical flow of the second 
class has been found by Vanden-Broeck (1986) in his analysis of flows under a gate. 
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FIGURE 6. Vertical section of a reservoir with a sloping bottom and a vertical wall. The sink S is 
at the corner. The free surface is CI, and /3 is the angle between the bottom and the vertical. The 
figure is an actual profile for /3 /x  = 0.4. The vertical scale is the same as the horizontal scale. 

1.1 L 

I I I I )  

1 .o 2.0 3.0 4.0 F' 
FIGURE 7. Cusp location h, versus Fp for ,8 = in The particular solution obtained in the limit 

a,s P+ix corresponds to F = 1 .  

5. Sink on a sloping bottom 
We shall now extend the procedure of $2 to obtain the flow in the region of the 

z-plane shown in figure 6. The rigid bottom slopes at an angle /3 from the vertical. 
At the origin there is a sink of strength 27cQ/(z-P). We choose @ = 0 on the 
vertical wall and on the free surface. It follows from the value of the sink strength 
that @ = Q on the sloping bottom. As before we choose the unit of length and the 
unit of velocity so that Q = 1 and g = 1. By using the transformation (2.1) we map 
the flow domain into the interior of the unit-circle in the t-plane (see figure 2). 

Since there is a sink of strength 2xQ/(~-/3) at t = 0 and a source at  t = - 1, C 
must have singularities a t  these two points and be regular elsewhere. The appropriate 
singularities are proportional to t 7 - l  at t = 0 and to (1 +t)1-2y at t = - 1, where 
y = /3/n;. Therefore we write 

g =  i ( l+t)"yty-lexp[,~~u~t,] .  (5.1) 

The coefficients a, are found by following the numerical procedure of $2. 
corresponding to y = +. Then by 

choosing a, = t log ( 3 / x )  and a, = 0 for n 3 1 we obtain an exact solution of (2.3). 
This is the solution found by Craya (1949). For /3 = 0 (i.e. y = 0) the problem reduces 
to the flow calculated by Tuck BE Vanden-Broeck (1984). Hocking (1985) obtained 

We shall consider first the special case B = 
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FIGURE 8. Cusp depth h, versus /3/x for the solutions found by Hocking. Craya’s solution is at 
/3 = $I and that of Tuck & Vanden-Broeck is at /3 = 0. 

numerical solutions for a sequence of angles ranging from 0 to in. Our numerical 
results were found to be in good agreement with theirs. In  particular we confirmed 
that a unique solution exists for each value of 0 < /3 < an. All these solutions are 
characterized by a stagnation point at infinity. For /3= in there is a uniform stream 
at infinity. Our numerical results show that a unique solution characterized by F = 1 
is obtained as /3++n. However there is a family of solutions for /3 = an. This family 
can be computed by choosing b = 0 in (4.4) and using the numerical procedure of $2. 
As F+ 1, A+O.  Therefore the limit as F+ 1 of (4.4) with b = 0, agrees with the limit 
of (5.1) as y+i. The coefficients a,, n > 1 in both expressions become identical and 
the difference between the coefficients a, is equal to A. These results are illustrated 
in figures 7 and 8. In figure 7 we present numerical values of the depth h, of the cusp 
under the level of the free surface at infinity (see figure 6) versus P for /3 = in. In 
figure 8 we present numerical values of h, versus /3 for 0 < /3 < in. 
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